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Abstract: The Taft’s substituent constant of the pentafluo-
rophenyl group (σ*(C6F5)) was reestimated to be 1.50 by
correlation between IR spectral data (vCdO) and σ* constants
for a series of esters (involving the pentafluorobenzyl group)
of 3-phenylpropanoic acid and butanoic acid. The possibility
of the disturbance of the correlation by the intramolecular
π-π interaction between C6F5 and C6H5 groups in pen-
tafluorobenzyl 3-phenylpropanoate was excluded by ab initio
and DFT calculations of the stable conformations and their
carbonyl frequencies. The reestimated σ*(C6F5) value was
used for calculation of the pKa value of pentafluorobenzyl
alcohol [14.5 (or 14.3)].

A pentafluorophenyl (C6F5) group is a distinctive and
useful substituent in organic synthesis,1 because of the
π-π stacking ability with an electron-rich aromatic ring2

and of the enhanced electron-withdrawing property. For
example, tris(pentafluorophenyl)borane highly acceler-
ates the aldol-type reaction of ketene silyl acetal and
aldehyde.3,4 The increasing utilities of the C6F5 group for
fine-tuning of the properties of advanced materials come
to demand a precise index, i.e., the Taft’s substituent
constant σ*, for the electron-withdrawing property.5,6 A
couple of Taft’s constant values for the C6F5 group
(σ*(C6F5)) have been reported to be 1.1 by Chang et al.7
and 1.96 by Brink,8 although both of them involve the

points in which reexamination is required in their
estimation processes.9 Both cases required the precise
pKa values of C6F5 group-containing alcohols or carboxylic
acid; however, those were measured by potentiometric
titrations under basic conditions. The method is unsuit-
able for the compounds containing a C6F5 group because
of the high sensitivity at the 4-position toward oxy
anions.10 To avoid such experimental ambiguity, we here
reestimated the σ*(C6F5) value by correlation between
their IR spectral data (vCdO) and σ* constants using a
series of esters, Ph(CH2)2CO2CH2R (1) (method 1) and
n-C3H7CO2CH2R (2) (method 2), in which pentafluo-
robenzyl (R ) C6F5) esters are involved.11 The method
should be more suitable for estimation of the σ* value
for substituents (R) sensitive to basic conditions. The
σ*(C6F5) value (1.50) thus estimated was applied to give
a reestimated pKa value [14.5 (or 14.3)] for pentafluo-
robenzyl alcohol (3).

Results and Discussion. We first examined adapting
the carbonyl frequency (vCdO) of pentafluorobenzyl 3-
phenylpropanoate12 (1a) (Figure 1) to Cohen’s equation
derived by the correlation between vCdO and σ* values
(method 1).11 The vCdO value of the prepared ester 1a was
measured in CCl4 to show 1750.8 cm-1,13 and its adapta-
tion to Cohen’s equation (eq 1, see Figure 1) gave the
σ*(C6F5) value of 1.50 (Figure 1).
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FIGURE 1. Estimation of the Taft’s σ*(C6F5) value by using
the carbonyl frequency of ester 1a.
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Here, we should discuss the stability of the possible
conformations A and B for ester 1a (Figure 2), because
conformation B may be stabilized by the intramolecular
π-π (C6F5-C6H5) interaction,2,14 and it must exhibit an
unsuitable vCdO for the correlation. We confirmed that
conformation A is more stable than B15 by ab initio and
DFT calculations. The calculations of the optimized
geometries of the ester 1a were performed at the B3LYP/
6-31G* level16 using the Gaussian 03W.17 The relative
energy between A and B (∆E ) EA - EB) was estimated
to be -4.2 kcal mol-1 at the MP2/6-31G** level (Figure
2), which suggests a sufficient stability of conformation
A. In addition, the carbonyl frequencies (vCdO) of confor-

mations A and B were calculated at the B3LYP/6-31G*
level (Figure 2). After being scaled by 0.9613,18 the vCdO

of conformation A was estimated to be 1753 cm-1, which
was very close to the experimental value (1750.8 cm-1).
Thus, the abundance ratio of conformation B with vCdO

(1767 cm-1) is negligible.19

Then, we estimated the σ*(C6F5) value by using non-
aromatic carboxylic acid esters (2), without the possibility
of intramolecular π-π interaction (method 2). The vCdO

values of 12 kinds of esters20 (2a-l) were measured
(Table 1), and the correlation equation (eq 2) was derived
by using the least-squares method.
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FIGURE 2. Confirmation of possible conformations for ester 1a.

σ* ) 0.094630vCdO - 164.03

(r2 ) 0.993, RMS error ) 0.07) (2)
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Satisfactory correlation between the σ*(R) and vCdO

values for esters 2a-l was observed.21 The σ*(C6F5) value
was thus estimated to be 1.54 by adaptation of the
measured vCdO value (1749.7 cm-1) for ester 2m12 in CCl4

to eq 2, and found that the value is consistent with that
(1.50) determined by using ester 1a. These results also
suggest that influence of the intramolecular π-π interac-
tion in ester 1a is negligible as was confirmed by the

calculations. Consequently, we concluded that the σ*(C6F5)
value is 1.50,21 which is larger than Chang’s value
(σ*(C6F5) ) 1.1) and smaller than Brink’s value
(σ*(C6F5) ) 1.96).

Finally, we utilized the σ*(C6F5) value for estimation
of the pKa value of alcohol 3. The σ*(C6F5) value (1.50)
estimated above was adapted to the pKa-σ*(R) correla-
tion eqs 38 or 411 to give the pKa values of 14.5 or 14.3
for 3, respectively (Figure 3). These values must be more
reliable as compared with the reported value (13.7) that
was calculated by eq 3, using Brink’s σ*(C6F5) value
(1.96).8

In conclusion, Taft σ* values were widely used in a
variety of areas, for instance, kinetic or thermodynamic
studies, designing of advanced materials, and so on.6
Figure 4 shows the order of inductive effect for a series
of fluorinated or aromatic substituents.22 The pentafluo-
rophenyl group is found to possess the moderate electron-
withdrawing ability between 3,5-dinitrophenyl and di-
fluoromethyl groups.

TABLE 1. Carbonyl Frequencies of Butyric Acid Esters and σ* Values

a Reference 11. b Calculated by using eq 2.

FIGURE 3. Estimation of the pKa value for pentafluorobenzyl
alcohol 3.

FIGURE 4. Taft’s σ* values for the fluorinated or aromatic compounds.
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Experimental Section

Pentafluorobenzyl 3-Phenylpropanoate (1a).12 To a solu-
tion of pentafluorobenzyl alcohol (0.59 g, 3.6 mmol) and pyridine
(0.71 g, 9.0 mmol) in Et2O (6.0 mL) was added 3-phenylpropanoyl
chloride (0.51 g, 3.0 mmol) at 0 °C. After being stirred for 15 h,
the mixture was acidified (pH <4) by 10% dilute HCl, and an
organic layer was extracted with ether (3 × 4 mL) and treated
in the usual manner. The product was purified by column
chromatography (SiO2, hexane/EtOAc (8:1)) to give 1a (0.90 g,
2.7 mmol, 91% yield) as a colorless oil. 1H NMR (200 MHz,
CDCl3) δ 0.94 (t, J ) 7.4 Hz, 3H), 1.66 (m, 2H), 2.31 (t, J ) 7.4
Hz, 2H), 5.19 (s, 2H); 19F NMR (282 MHz, CDCl3) δ -84.8 (m,
2F), -76.0 (t, J ) 21 Hz, 1F), -65.4 (m, 2F); IR (CCl4) 942, 1058,
1135, 1311, 1507, 1522, 1751, 2850, 2917, 3030 cm-1.

2,2,2-Tribromoethyl Butyrate (2c). Ester 2c was prepared
from 2,2,2-tribromoethanol (1.0 g, 3.6 mmol), butyryl chloride
(0.32 g, 3.0 mmol), and pyridine (0.71 g, 9.0 mmol) in 50% yield
(0.54 g, 1.5 mmol) by the procedure described for ester 1a. Brown
oil; 1H NMR (500 MHz, CDCl3) δ 1.02 (t, J ) 7.5 Hz, 3H), 1.76
(m, 2H), 2.47 (t, J ) 7.5 Hz, 2H), 4.93 (s, 2H); 13C NMR (50 MHz,
CDCl3) δ 13.6, 18.1, 35.7, 36.0, 76.4, 171.2; IR (CCl4) 1012, 1043,
1091, 1152, 1244, 1757, 2851, 2876, 2921, 2966 cm-1. Anal. Calcd
for C6H9Br3O2: C, 20.42; H, 2.57. Found: C, 20.23; H, 2.52.

2-Cyanoethyl Butyrate (2d).20a Ester 2d was prepared from
2-cyanoethanol (0.60 g, 8.4 mmol), butyryl chloride (0.75 g, 7.0
mmol), and pyridine (1.7 g, 21 mmol) in 50% yield (0.49 g, 3.5
mmol). Colorless oil; 1H NMR (200 MHz, CDCl3) δ 0.97 (t, J )
7.4 Hz, 3H), 1.68 (m, 2H), 2.35 (t, J ) 7.4 Hz, 2H), 2.71 (t, J )
6.4 Hz, 2H), 4.29 (t, J ) 6.4 Hz, 2H); 13C NMR (50 MHz, CDCl3)
δ 12.6, 17.1, 34.8, 57.8, 116.6, 171.9; IR (CCl4) 1092, 1168, 1249,
1557, 1748, 2850, 2877, 2918, 2966 cm-1.

2-Chloroethyl Butyrate (2e).20b Ester 2e was prepared from
2-chloroethanol (0.58 g, 7.2 mmol), butyryl chloride (0.64 g, 6.0
mmol), and pyridine (1.4 g, 18 mmol) in 84% yield (0.76 g, 5.1
mmol). Colorless oil; 1H NMR (200 MHz, CDCl3) δ 0.97 (t, J )
7.4 Hz, 3H), 1.68 (m, 2H), 2.34 (t, J ) 7.4 Hz, 2H), 3.68 (t, J )
6.0 Hz, 2H), 4.34 (t, J ) 6.0 Hz, 2H); 13C NMR (50 MHz, CDCl3)
δ 12.7, 17.7, 35.0, 41.1, 63.1, 171.9; IR (CCl4) 1095, 1170, 1247,
1311, 1746, 2877, 2935, 2967 cm-1.

2-Iodoethyl Butyrate (2f).20c Ester 2f was prepared from
2-iodoethanol (0.83 g, 4.8 mmol), butyryl chloride (0.43 g, 4.0
mmol), and pyridine (0.95 g, 12 mmol) in 91% yield (0.88 g, 3.6
mmol). Brown oil; 1H NMR (200 MHz, CDCl3) δ 0.97 (t, J ) 7.4
Hz, 3H), 1.68 (m, 2H), 2.33 (t, J ) 7.4 Hz, 2H), 3.30 (t, J ) 6.6
Hz, 2H), 4.33 (t, J ) 6.6 Hz, 2H); 13C NMR (50 MHz, CDCl3) δ

0.6, 13.3, 17.7, 35.4, 63.8, 172.2; IR (CCl4) 981, 1091, 1165, 1249,
1743, 2876, 2941, 2967 cm-1.

2-Phenoxyethyl Butyrate (2g).20d Ester 2g was prepared
from 2-phenoxyethanol (0.83 g, 6.0 mmol), butyryl chloride (0.53
g, 5.0 mmol), and pyridine (1.2 g, 15 mmol) quantitatively (1.0
g, 5.0 mmol). Colorless oil; 1H NMR (200 MHz, CDCl3) δ 0.95 (t,
J ) 7.4 Hz, 3H), 1.67 (m, 2H), 2.34 (t, J ) 7.4 Hz, 2H), 4.17 (t,
J ) 4.6 Hz, 2H), 4.44 (t, J ) 4.6 Hz, 2H), 6.89-7.0 (m, 3H),
7.26-7.33 (m, 2H); 13C NMR (50 MHz, CDCl3) δ 12.9, 17.7, 35.1,
61.8, 65.1, 113.8, 120.3, 128.8, 157.9, 172.2; IR (CCl4) 955, 1087,
1172, 1245, 1456, 1495, 1589, 1601, 1743, 2876, 2955, 2967 cm-1.

2-Methoxyethyl Butyrate (2h).20e Ester 2h was prepared
from 2-methoxyethanol (0.73 g, 9.6 mmol), butyryl chloride (0.85
g, 8.0 mmol), and pyridine (2.1 g, 26 mmol) in 73% yield (0.85 g,
5.8 mmol). Colorless oil; 1H NMR (200 MHz, CDCl3) δ 0.95 (t,
J ) 7.4 Hz, 3H), 1.67 (m, 2H), 2.33 (t, J ) 7.4 Hz, 2H), 3.39 (s,
3H), 3.60 (t, J ) 4.8 Hz, 2H), 4.23 (t, J ) 4.8 Hz, 2H); IR (CCl4)
1034, 1094, 1132, 1179, 1252, 1739, 2877, 2934, 2967 cm-1.

2-Ethoxyethyl Butyrate (2j).20f Ester 2j was prepared from
2-ethoxyethanol (0.65 g, 7.2 mmol), butyryl chloride (0.64 g, 6.0
mmol), and pyridine (1.4 g, 18 mmol) in 56% yield (0.54 g, 3.4
mmol). Colorless oil; 1H NMR (200 MHz, CDCl3) δ 0.95 (t, J )
7.6 Hz, 3H), 1.22 (t, J ) 7.0 Hz, 3H), 1.66 (m, 2H), 2.33 (t, J )
7.6 Hz, 2H), 3.54 (q, J ) 7.0 Hz, 2H), 3.63 (t, J ) 4.6 Hz, 2H),
4.23 (t, J ) 4.6 Hz, 2H); 13C NMR (50 MHz, CDCl3) δ 13.4, 14.9,
18.2, 35.8, 63.2, 66.3, 68.2, 173.3; IR (CCl4) 1128, 1180, 1253,
1739, 2875, 2971 cm-1.

Pentafluorobenzyl Butyrate (2m).12 Ester 2m was pre-
pared from pentafluorobenzyl alcohol (0.71 g, 3.6 mmol), butyryl
chloride (0.38 g, 3.6 mmol), and pyridine (0.85 g, 10.8 mmol) in
56% yield (0.54 g, 2.0 mmol). Colorless oil; 1H NMR (200 MHz,
CDCl3) δ 0.94 (t, J ) 7.4 Hz, 3H), 1.66 (m, 2H), 2.31 (t, J ) 7.4
Hz, 2H), 5.19 (s, 2H); 19F NMR (282 MHz, CDCl3) δ -84.8 (m,
2F), -76.0 (t, J ) 21 Hz, 1F), -65.4 (dd, J ) 6.8, 21 Hz, 2F); IR
(CCl4) 943, 1058, 1134, 1163, 1312, 1507, 1522, 1750, 2876, 2934,
2968 cm-1.
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